The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

PHENIX results on reconstructed jets in *p*+*p* and heavy ion collisions

Arbin Timilsina (Iowa State University)
for the PHENIX Collaboration

September 29, 2015

Jets at RHIC

- Can measure jet modification at lower energies- allows exploration of $\forall s_{NN}$ dependence of energy loss
- Versatility of RHIC provides ability to study jet modification in different collision geometries, system sizes, and energy densities

Moving beyond single particles:

Jet measurements in heavy ion collisions -> quantify the energy loss of hard-scattered partons

The PHENIX Detector

PHENIX central arms: $|\eta| < 0.35$, $\Delta \phi = \pi$

- Charged particle tracks are reconstructed using the Drift Chamber (DC), the Pad Chamber (PC), and the collision point
- Neutral clusters are measured in the Electromagnetic Calorimeter (EMCal). EMCals (PbSc & PbGl) measures π^0 , γ , and some hadrons (with lower efficiency).

Jets in PHENIX

- 2012 $\sqrt{s_{NN}}$ = 200 GeV p+p and Cu+Au
- Jets reconstructed using the anti- k_t algorithm with R = 0.2
 - track $p_{T} > 500 \text{ MeV/c}$
 - clusters energy > 500 MeV
- Jet-level cuts
 - number of constituents ≥ 3
 - 0.2 < charged fraction < 0.7
 - jet axis from edge: $|\eta| > 0.05$, $\Delta \phi > 0.12$

Note: No single hard particle requirement in a jet

 Centrality-dependent response matrices generated by embedding PYTHIA p+p jets into real Cu+Au events

Jets in PHENIX: Jet Energy Scale

- For each $p_{\text{T, True}}$ bin, $p_{\text{T, Reco}}/p_{\text{T, True}}$ distribution is examined
- Due to missing neutral hadronic energy and tracking inefficiency, on average, PHENIX gets ≈70% of the true jet energy
- For 0-20%, the UE increases the $p_{T_{,Reco}}$ up to 3.2% (1.7%) at 15 GeV/c (26 GeV/c) relative to that in p+p events

Jets in PHENIX: Jet Energy Resolution

- The width of $p_{T, Reco}/p_{T, True}$ distribution is $\approx 16-24\%$
- In PHENIX, the resolution is not driven by EMCal & DC resolution but by jet-by-jet fluctuations
- For 0-20%, the UE increases the $p_{T_{,Reco}}$ resolution up to 2.7% (1.3%) at 15 GeV/c (26 GeV/c) relative to that in p+p events

Jets in PHENIX

Similar jet reconstruction method proven to work in *p*+*p* and *d*+Au!!!

arXiv:1509.04657 [nucl-ex]

For *d*+Au jet results, please see

- talk by Ali Hanks (Sept. 29 at 11:50)
- poster #0421 by D. Perepelitsa

Jets in PHENIX

Similar jet reconstruction method proven to work in *p*+*p* and *d*+Au!!!

arXiv:1509.04657 [nucl-ex]

For *d*+Au jet results, please see

- talk by Ali Hanks (Sept. 29 at 11:50)
- poster #0421 by D. Perepelitsa

Cu+Au comes with challenges

- Stronger underlying event contribution
 - -> choice of smaller cone size
- Fake jet contribution
 - -> fake jet subtraction

Fake jet

Data driven method of estimating and statistically subtracting fake jet contribution

- For events in which jet is not reconstructed, position (η, ϕ) of tracks and position (η, ϕ) of clusters are randomly shuffled
- Jet reconstruction performed in these shuffled tracks and clusters
 - -> returns estimated fake jet

Fake jet

Data driven method of estimating and statistically subtracting fake jet contribution

- For events in which jet is not reconstructed, position (η, ϕ) of tracks and position (η, ϕ) of clusters are randomly shuffled
- Jet reconstruction performed in these shuffled tracks and clusters
 - -> returns estimated fake jet
- Estimated fake jet yield is statistically subtracted from the raw jet yield
 - -> returns estimated signal jet

Fake jet

- Fake jet contribution is both $p_{\rm T}$ and centrality dependent; the contribution being largest for central collisions and at low $p_{\rm T}$
 - for 0-20%, purity is 70% (93%) at 15 GeV/c (23 GeV/c)

Fake jet HIJING simulation study

- Matched jet: Reco jet which is within $\Delta R < 0.2$ of true jet
- Fake jet: Reco jet which is not matched

Fake jet estimation procedure gives comparable result!

Fake jet contribution analyzed alternately by re-running the analysis with cluster and track selections of > 2 GeV

Jet yields

- Spectra unfolded using SVD method (cross-checked using iterative Bayesian method)
 - detector effects
 - centrality dependent underlying event fluctuations

$$R_{ ext{AA}}^{ ext{cent}} = rac{\left(rac{1}{N_{ ext{evts}}^{ ext{cent}}}rac{ ext{d}N}{ ext{d}p_{ ext{T}}}
ight)_{ ext{CuAu}}}{T_{ ext{AB}}^{ ext{cent}} imes rac{ ext{d}\sigma}{ ext{d}p_{ ext{D}}}}$$

Suppression shows centrality dependence

- Suppression shows centrality dependence
- No p_T dependence

 For central collisions, jets are suppressed by approximately a factor of two

$$R_{ ext{CP}}^{ ext{cent}} = rac{\left(rac{1}{N_{ ext{coll}}^{ ext{cent}}}
ight)\left(rac{1}{N_{ ext{evts}}^{ ext{cent}}}rac{ ext{d}N}{ ext{d}p_{ ext{T}}}
ight)_{ ext{CuAu}}}{\left(rac{1}{N_{ ext{coll}}^{60\%-90\%}}
ight)\left(rac{1}{N_{ ext{evts}}^{60\%-90\%}}rac{ ext{d}N}{ ext{d}p_{ ext{T}}}^{60\%-90\%}
ight)_{ ext{CuAu}}}$$

- R_{CP} probes relative central vs. peripheral (60-90%) jet production
- Relatively reduced systematics

Jet suppression: R_{AA} vs. N_{part}

 R_{AA} shows strong centrality dependence and no p_{T} dependence

Jet suppression: comparison

- ATLAS result is R=0.2 $R_{\rm CP}$ for 38 < $p_{\rm T}$ < 44 GeV
- Both results asymptote towards the same value

Jet suppression: theory teaser

- Calculation done for R=0.2 but for Au+Au and different centrality classes
- Is suppression stronger than expected within this model?

Conclusion

- The ratios of jet spectra from different centrality selections of Cu+Au collisions show a strong modification of jet production at all $p_{\rm T}$
 - Jets are found to be suppressed by approximately a factor of two in central Cu+Au collisions as compared to p+p collisions
 - Suppression shows no p_T dependence
- Work progressing towards finalizing the results and heading towards publication

Backup

Evaluation of systematic uncertainty

- Variation is made in unfolding procedure. The default data is unfolded with modification in unfolding procedure.
 - Shape of input spectrum: The input spectrum is obtained by modifying the power of the truth spectrum by ±0.5.
 - Unfolding is performed with Bayes method (default is SVD method).
- Variation is made in simulation. The default data is unfolded with modified response matrix.
 - Energy scale
 - EMCal energy scale: The energy of EMCal clusters is varied by ±3%
 - DC p_T scale: The p_T of tracks is varied by p_T dependent way: 2% for p_T < 10 GeV/c and increased linearly such that it is 4% at 30 GeV/c.
- ⇒ Same variation is made in both data and simulation. The modified data is unfolded with modified response matrix.
 - Jet-level cuts:
 - Default: nc >=3 && cf > 0.2 && cf < 0.7. Variation: nc >=5 && cf > 0.2 && cf < 0.6
 - Acceptance
 - Fiducial cut: The reconstructed jets are required to lie within tighter phase space.
 - East/West arm: East arm yield is unfolded with response matrix for east arm and west arm yield is unfolded with response matrix for west arm.
 - Fake jet
 - Default: Cluster energy > 0.5 GeV, track $p_T > 0.5$ GeV/c. Variation: Cluster energy > 2.0 GeV, track $p_T > 2.0$ GeV/c.

Fake jet simulation

- Matched jet: Reco jet which is within $\Delta R < 0.2$ of true jet
- Fake jet: Reco jet which is not matched

Jets in PHENIX: Jet Energy Scale

- For each $p_{T, True}$ bin, $p_{T, Reco}/p_{T, True}$ distribution is examined
- Due to missing neutral hadronic energy and tracking inefficiency, on average, PHENIX gets ≈70% of the true jet energy
- For 0-20%, the UE increases the $p_{\rm T, Reco}$ up to 3.2% (1.7%) at 15 GeV/c (26 GeV/c) relative to that in p+p events

Jets in PHENIX: Jet Energy Resolution

- The width of $p_{T, Reco}/p_{T, True}$ distribution is $\approx 16-24\%$
- In PHENIX, the resolution is not driven by EMCal & DC resolution but by jet-by-jet fluctuations
- For 0-20%, the UE increases the $p_{\rm T, Reco}$ resolution up to 2.7% (1.3%) at 15 GeV/c (26 GeV/c) relative to that in p+p events

d+Au results

Consistent with nPDF calculations

Central d+Au shows suppression consistent with modest CNM E-loss, but enhancement in peripheral d+Au challenging to understand within these models

